Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614956

RESUMO

STUDY QUESTION: How does the gut bacteriome differ based on mood disorders (MDs) in women with polycystic ovary syndrome (PCOS), and how can the gut bacteriome contribute to the associations between these two conditions? SUMMARY ANSWER: Women with PCOS who also have MDs exhibited a distinct gut bacteriome with reduced alpha diversity and a significantly lower abundance of Butyricicoccus compared to women with PCOS but without MDs. WHAT IS KNOWN ALREADY: Women with PCOS have a 4- to 5-fold higher risk of having MDs compared to women without PCOS. The gut bacteriome has been suggested to influence the pathophysiology of both PCOS and MDs. STUDY DESIGN, SIZE, DURATION: This population-based cohort study was derived from the Northern Finland Birth Cohort 1966 (NFBC1966), which includes all women born in Northern Finland in 1966. Women with PCOS who donated a stool sample at age 46 years (n = 102) and two BMI-matched controls for each case (n = 205), who also responded properly to the MD criteria scales, were included. PARTICIPANTS/MATERIALS, SETTING, METHODS: A total of 102 women with PCOS and 205 age- and BMI-matched women without PCOS were included. Based on the validated MD criteria, the subjects were categorized into MD or no-MD groups, resulting in the following subgroups: PCOS no-MD (n = 84), PCOS MD (n = 18), control no-MD (n = 180), and control MD (n = 25). Clinical characteristics were assessed at age 31 years and age 46 years, and stool samples were collected from the women at age 46 years, followed by the gut bacteriome analysis using 16 s rRNA sequencing. Alpha diversity was assessed using observed features and Shannon's index, with a focus on genera, and beta diversity was characterized using principal components analysis (PCA) with Bray-Curtis Dissimilarity at the genus level. Associations between the gut bacteriome and PCOS-related clinical features were explored by Spearman's correlation coefficient. A P-value for multiple testing was adjusted with the Benjamini-Hochberg false discovery rate (FDR) method. MAIN RESULTS AND THE ROLE OF CHANCE: We observed changes in the gut bacteriome associated with MDs, irrespective of whether the women also had PCOS. Similarly, PCOS MD cases showed a lower alpha diversity (Observed feature, PCOS no-MD, median 272; PCOS MD, median 208, FDR = 0.01; Shannon, PCOS no-MD, median 5.95; PCOS MD, median 5.57, FDR = 0.01) but also a lower abundance of Butyricicoccus (log-fold changeAnalysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC)=-0.90, FDRANCOM-BC=0.04) compared to PCOS no-MD cases. In contrast, in the controls, the gut bacteriome did not differ based on MDs. Furthermore, in the PCOS group, Sutterella showed positive correlations with PCOS-related clinical parameters linked to obesity (BMI, r2=0.31, FDR = 0.01; waist circumference, r2=0.29, FDR = 0.02), glucose metabolism (fasting glucose, r2=0.46, FDR < 0.001; fasting insulin, r2=0.24, FDR = 0.05), and gut barrier integrity (zonulin, r2=0.25, FDR = 0.03). LIMITATIONS, REASONS FOR CAUTION: Although this was the first study to assess the link between the gut bacteriome and MDs in PCOS and included the largest PCOS dataset for the gut microbiome analysis, the number of subjects stratified by the presence of MDs was limited when contrasted with previous studies that focused on MDs in a non-selected population. WIDER IMPLICATIONS OF THE FINDINGS: The main finding is that gut bacteriome is associated with MDs irrespective of the PCOS status, but PCOS may also modulate further the connection between the gut bacteriome and MDs. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement (MATER, No. 813707), the Academy of Finland (project grants 315921, 321763, 336449), the Sigrid Jusélius Foundation, Novo Nordisk Foundation (NNF21OC0070372), grant numbers PID2021-12728OB-100 (Endo-Map) and CNS2022-135999 (ROSY) funded by MCIN/AEI/10.13039/501100011033 and ERFD A Way of Making Europe. The study was also supported by EU QLG1-CT-2000-01643 (EUROBLCS) (E51560), NorFA (731, 20056, 30167), USA/NIH 2000 G DF682 (50945), the Estonian Research Council (PRG1076, PRG1414), EMBO Installation (3573), and Horizon 2020 Innovation Grant (ERIN, No. EU952516). The funders did not participate in any process of the study. We have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.

2.
J Endocrinol Invest ; 46(3): 567-576, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36242744

RESUMO

OBJECTIVE: Human brown adipose tissue (BAT) has gained considerable attention as a potential therapeutic target for obesity and its related cardiometabolic diseases; however, whether the gut microbiota might be an efficient stimulus to activate BAT metabolism remains to be ascertained. We aimed to investigate the association of fecal microbiota composition with BAT volume and activity and mean radiodensity in young adults. METHODS: 82 young adults (58 women, 21.8 ± 2.2 years old) participated in this cross-sectional study. DNA was extracted from fecal samples and 16S rRNA sequencing was performed to analyse the fecal microbiota composition. BAT was determined via a static 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography scan (PET/CT) after a 2 h personalized cooling protocol. 18F-FDG uptake was also quantified in white adipose tissue (WAT) and skeletal muscles. RESULTS: The relative abundance of Akkermansia, Lachnospiraceae sp. and Ruminococcus genera was negatively correlated with BAT volume, BAT SUVmean and BAT SUVpeak (all rho ≤ - 0.232, P ≤ 0.027), whereas the relative abundance of Bifidobacterium genus was positively correlated with BAT SUVmean and BAT SUVpeak (all rho ≥ 0.262, P ≤ 0.012). On the other hand, the relative abundance of Sutterellaceae and Bifidobacteriaceae families was positively correlated with 18F-FDG uptake by WAT and skeletal muscles (all rho ≥ 0.213, P ≤ 0.042). All the analyses were adjusted for the PET/CT scan date as a proxy of seasonality. CONCLUSION: Our results suggest that fecal microbiota composition is involved in the regulation of BAT and glucose uptake by other tissues in young adults. Further studies are needed to confirm these findings. CLINICAL TRIAL INFORMATION: ClinicalTrials.gov no. NCT02365129 (registered 18 February 2015).


Assuntos
Microbiota , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Feminino , Humanos , Adulto Jovem , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Estudos Transversais , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , RNA Ribossômico 16S/genética
3.
Cytokine ; 126: 154915, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31706202

RESUMO

Bench press (i.e. arm-based) and half-squat (i.e. leg-based) are exercises commonly used to increase and evaluate muscular strength. In addition to differences in the location of the muscles that participate in each exercise, the total muscle mass required for the latter is larger than that involved in the former. The aim of this study is to analyze the effects of a maximal incremental strength test when performed by bench press and by half-squat on myocellular damage, oxidative damage and the inflammatory cytokine response. Ten male athletes were subjected to half-squat and bench press incremental strength tests. Blood samples were collected at rest, 15-minutes and 24 h post-test. Hydroperoxide and malondialdehyde concentrations were determined as lipid peroxidation markers. Lactate dehydrogenase (LDH) and creatine kinase isoenzyme MB (CK-MB) activities were determined as markers of muscle damage. α-Actin concentration was determined as a marker of sarcomeric damage. Serum interleukin (IL) 6, IL10, and tumor necrosis factor alpha (TNFα) were determined to assess the inflammatory response. LDH and CK-MB values were greater at 15 min and 24 h post bench press exercise (p < 0.05). No differences were found in lipid peroxidation or α-actin. Interestingly, IL10 values were greater in response to the press bench at 24 h post-test (p < 0.05). Our results suggest that, at equivalent workloads, an arm-based exercise induced higher anti-inflammatory effects and more severe muscle damage compared with a leg-based exercise.


Assuntos
Mediadores da Inflamação/sangue , Interleucina-10/sangue , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Actinas/sangue , Braço/fisiologia , Creatina Quinase Forma MB/sangue , Humanos , Peróxido de Hidrogênio/sangue , Interleucina-6/sangue , L-Lactato Desidrogenase/sangue , Perna (Membro)/fisiologia , Masculino , Malondialdeído/sangue , Contração Muscular/fisiologia , Força Muscular/fisiologia , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...